图的m着色问题
Description
给定无向连通图G=(V, E)和m种不同的颜色,用这些颜色为图G的各顶点着色,每个顶点着一种颜色。是否有一种着色法使G中相邻的两个顶点有不同的颜色?
这个问题是图的m可着色判定问题。若一个图最少需要m种颜色才能使图中每条边连接的两个顶点着不同颜色,则称这个数m为该图的色数。求一个图的色数m的问题称为图的m可着色优化问题。
编程计算:给定图G=(V, E)和m种不同的颜色,找出所有不同的着色法和着色总数。
Input
第一行是顶点的个数n(2≤n≤10),颜色数m(1≤m≤n)。
接下来是顶点之间的相互关系:a b
表示a和b相邻。当a,b同时为0时表示输入结束。
output
输出所有的着色方案,表示某个顶点涂某种颜色号,每个数字的后面有一个空格。最后一行是着色方案总数。
Sample Input
5 4
1 3
1 2
1 4
2 3
2 4
2 5
3 4
4 5
0 0Sample Output
1 2 3 4 1
1 2 3 4 3
1 2 4 3 1
1 2 4 3 4
1 3 2 4 1
1 3 2 4 2
1 3 4 2 1
1 3 4 2 4
1 4 2 3 1
1 4 2 3 2
1 4 3 2 1
1 4 3 2 3
2 1 3 4 2
2 1 3 4 3
2 1 4 3 2
2 1 4 3 4
2 3 1 4 1
2 3 1 4 2
2 3 4 1 2
2 3 4 1 4
2 4 1 3 1
2 4 1 3 2
2 4 3 1 2
2 4 3 1 3
3 1 2 4 2
3 1 2 4 3
3 1 4 2 3
3 1 4 2 4
3 2 1 4 1
3 2 1 4 3
3 2 4 1 3
3 2 4 1 4
3 4 1 2 1
3 4 1 2 3
3 4 2 1 2
3 4 2 1 3
4 1 2 3 2
4 1 2 3 4
4 1 3 2 3
4 1 3 2 4
4 2 1 3 1
4 2 1 3 4
4 2 3 1 3
4 2 3 1 4
4 3 1 2 1
4 3 1 2 4
4 3 2 1 2
4 3 2 1 4
Total=48
Program ended with exit code: 0代码
#include <iostream>
using namespace std;
int n,m;
int a=1,b=1;
int cou=0;
int graph[20][20]={0};
int color[20]={0};
bool ok(int c){
for(int k=1;k<=n;k++){
if(graph[c][k]&&color[c]==color[k]){
return false;
}
}
return true;
}
void backtrack(int cur){
if(cur>n){
for(int i=1;i<=n;i++){
cout<<color[i]<<" ";
}
cou++;
cout<<endl;
}else{
for(int i=1;i<=m;i++){
color[cur]=i;
if(ok(cur)){
backtrack(cur+1);
}
color[cur]=0;
}
}
}
int main()
{
cin>>n>>m;
while((cin>>a>>b)&&a!=0&&b!=0){
graph[a][b]=1;
graph[b][a]=1;
}
backtrack(1);
cout<<"Total="<<cou<<endl;
return 0;
}
图的m着色问题
http://blog.ailuoku6.top/2019/06/03/tu-de-m-zhao-se-wen-ti/